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A B S T R A C T   

In classical theory, heat conduction in solids is regarded as a diffusion process driven by a temperature gradient, 
whereas fluid transport is understood as convection process involving the bulk motion of the liquid or gas. In the 
framework of ab initio theory, which is directly built upon quantum mechanics without relying on measured 
parameters or phenomenological models, we observed and investigated the fluid-like convective transport of 
energy carriers in solid heat conduction. Thermal transport, carried by phonons, is simulated in graphite by 
solving the Boltzmann transport equation using a Monte Carlo algorithm. To capture convective transport, with 
phonon distributions deviating significantly from equilibrium Bose-Einstein distribution, we determined phonon 
interactions using ab initio approaches that go beyond relaxation time approximations. The presence of strong 
momentum-conserved Normal scatterings in graphite introduces a regime for hydrodynamic phonon transport. 
Fluid-like features, such as vortex and jet flow, are visualized and compared with classical theories on heat 
diffusion and fluid convection. Our study on phonon convection enhances fundamental understandings of heat 
conduction in solids from both atomic scale and quantum aspects, innovating thermal designs for future mi-
croelectronic devices and other thermal management applications. This potentially offers solutions for heat 
dissipation challenges in the post-Moore era.   

1. Introduction 

Convection and diffusion are two basic facets of transport phenom-
ena. Convection involves a collective motion of particles due to external 
forces, such as pressure differences and gravity, while diffusion stems 
from the random walk of thermal motions, driving systems with a par-
ticle density gradient towards equilibrium. Traditionally, fluid transport 
has been understood as convection processes involving the bulk motion 
of molecules in liquid or gas flows [1]. In the classical theory of heat 
transfer, heat conduction in solids is phenomenologically regarded as a 
diffusive process, described by Fourier’s law; that is, heat flux is pro-
portional to the temperature gradient, but the microscopic picture of 
such a diffusive process was untouched. With the establishment of 
quantum theory, the quantization of lattice vibrations introduced the 
concept of phonons. The lattice vibrations can be considered as the su-
perposition of elementary modes of harmonic waves, and the quantum 
description of those elementary vibrations is known as a phonon. 
Microscopically, heat conduction in nonmetals results from phonon 
transport. Since phonons are quasi-particles, their momentum is not 

necessarily conserved during phonon-phonon interactions. 
The Umklapp scatterings, which destroy momentum, inhibit the 

collective motion of phonons and impede phonon convection [2]. 
Consequently, heat transport in solids predominantly exhibits diffusive 
behavior, which has served as the foundation of the heat transfer theory 
used across various engineering applications. However, when the 
phonon-phonon interactions are dominated by momentum-conserved 
Normal scatterings, a realm for phonon convection—or hydrodynamic 
phonon transport—emerges. In the hydrodynamic regime, the transport 
of phonons behaves like fluid. For example, thermal energy can propa-
gate like waves in an ocean, and the resistance to heat flux is dominated 
by friction with the wall, similar to pipe flow, as described by simplified 
models [3–8]. In comparison to diffusion, convection can be a more 
efficient method of heat transfer. Despite their significance in thermal 
applications, such as heat dissipation in microelectronic devices, the 
real-space dynamics of phonon hydrodynamic processes have not been 
thoroughly studied from an ab initio perspective. 

Ab initio approaches serve as powerful tools for computing phonon 
transport from first principles without using any measured parameters 
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or phenomenological models. These approaches have been employed to 
predict materials thermal properties and have achieved good agreement 
with experiments [9–17]. As for hydrodynamic phonon transport, many 
studies are based on classical models or partially incorporated with ab 
initio input  [3–8]. The Boltzmann transport equation, under Callaway’s 
dual relaxation approximation [18], has been intensively employed to 
study phonon hydrodynamic transport [5,8], while a comprehensive ab 
initio treatment of phonon interactions beyond the dual relaxation 
approximation has only been applied to investigate the dynamics of 
convective phonon transport in steady-state or simple structures 
[19–21]. Although the Green’s function method is based on ab initio, it is 
limited to specific geometries [22]. Recently, the phonon vortex was 
predicted to exist in graphene by phenomenological models [23] and 
was later examined by the dual relaxation approximation with ab initio 
determined relaxation time [24]. The dynamics of the phonon vortex 
have not yet been fully investigated by an ab initio approach. Further-
more, theoretical investigations on the phonon vortex so far have been 
limited to two-dimensional materials, which pose greater challenges for 
experiments and applications compared to bulk materials. 

In this paper, we employ ab initio approaches based on density 
functional theory to simulate the dynamics of hydrodynamic phonon 
transport in real-space, focusing on a widely used bulk material, 
graphite. The three-dimensional mode-resolved phonon Boltzmann 
transport equation, complemented with ab initio phonon interactions 
that go beyond the relaxation time approximation, is solved using a 
deviational variance-reduced Monte Carlo algorithm [25–27]. Our 
simulations reveal anomalous fluid-like behaviors, such as vortex and jet 
flow, in the heat conduction of graphite, which extend beyond the un-
derstanding provided by classical heat transfer theory. Our work 
broadens the knowledge of heat conduction in solids and provides in-
sights for thermal designs in future microelectronic industries. 

2. Method 

2.1. Boltzmann transport equation and ab initio scattering matrix 

The phonon transport process is governed by phonon Boltzmann 
transport equation (BTE) that describes the dynamics of the phonon 
distribution function nqs(x, t) as a function of real space x and time t for 
phonon modes labelled by wavevector q and polarization s, 

∂nqs

∂t
+ vqs⋅∇nqs =

(
∂nqs

∂t

)

scatt
(1)  

where the phonon advection on the left-hand side is balanced by the 
phonon scatterings on the right-hand side. vqs = ∂ωqs/∂q is the phonon 
group velocity, and ωqs is the phonon frequency determined by diago-
nalizing the dynamic matrix. For diffusive process, the phonon distri-
bution typically remains close to equilibrium, hence the scattering term 
could be approximated by only considering the distribution deviation of 
the single mode qs while treating other background modes as equilib-
rium, which is known as relaxation time approximation. While for hy-
drodynamic process, the phonon distribution is far away from 
equilibrium Bose-Einstein distribution due to the collective motion of 
phonons, so the deviation of all modes should be simultaneously 
considered using a scattering matrix Ωqs, q′s′ that quantifies the transition 
rates from q′s′ to qs, 
(

∂nqs

∂t

)

scatt
=
∑

q′s′
Ωqs, q′s′

(
nq′s′ − n0

q′s′

)
(2)  

where n0
qs is the equilibrium Bose-Einstein distribution function. If only 

considering the diagonal terms and set the off-diagonal terms of Ωqs, q′s′ 

to zero, Eq. (2) reduces to relaxation time approximation. The scattering 
matrix is ab initio determined by quantum perturbation theory  [28] 
considering three-phonon scattering processes. The details of the 

methodology to obtain the scattering matrix can be found in our pre-
vious work [15]. The only input of this ab initio approach is the inter-
atomic force constants, i.e., the expansion coefficients of the interatomic 
potential with respect to the atomic displacements from equilibrium 
positions. To get interatomic force constants of graphite, we start with 
generating an irreducible set of displacement configurations on a 
supercell with 588 carbon atoms. For each displacement configuration, 
the interatomic forces were determined from the electron wave func-
tions derived by density functional theory  [15–17,29,30] using Quan-
tum ESPRESSO package  [31,32]. Then the interatomic force constants 
are extracted by fitting the displacement-force set using the ALAMODE 
package  [33]. The cutoff radius of the third-order interatomic force 
constants is 9 bohr. We used projector-augmented wave pseudopoten-
tials and non-local functional ‘vdW-DF-ob86’ for electron exchange and 
correlation  [34]. The convergence threshold for self-consistency is 
10− 11. The kinetic energy cutoff for electronic wavefunctions is 120 Ry. 
The Monkhorst-Pack grids for primitive and supercell are 14 × 14 × 6 
and 2 × 2 × 2, respectively. All the parameters for the density functional 
theory calculations have been carefully checked to make the uncertainty 
of the forces acting on each atom less than 10− 6 Ry/bohr. The mesh of 
the q-points for phonon transport is 50 × 50 × 8. 

2.2. Deviational variance-reduced Monte Carlo algorithm 

The BTE with full scattering matrix is solved by the recently devel-
oped deviational variance-reduced Monte Carlo algorithm  [25–27]. The 
deviational variance-reduced Monte Carlo approach has been demon-
strated to quantify phonon transport and provide agreement with ex-
periments in our recent studies [25,26]. In Monte Carlos method, large 
quantities of sample particles are initialized in real space with assigned 
phonon modes based on equilibrium Bose-Einstein distribution, and 
then loop over advection-scattering-sampling procedures to simulate the 
transport dynamics. In advection procedure, the sample particle moves 
with group velocity. In scattering procedure, the sample particle 
changes its mode according to scattering matrix. Temperature and heat 
flux field are sampled in sampling procedure. Different from conven-
tional Monte Carlo algorithm, our method solves the deviational 
energy-based Boltzmann transport equation, 

∂δfqs

∂t
+ vqs⋅∇δfqs =

∑

q′s′
Aqs, q′s′δfq′s′ (3)  

where δfqs = ℏωqs(nqs − n0
qs) is the deviational energy of phonon mode qs, 

and Aqs, q′s′ = Ωqs, q′s′ωqs/ωq′s′ is the matrix that describes the energy ex-
change between phonon modes through phonon scatterings. Each 
sample particle carries a positive or negative unit energy that contrib-
utes to the energy deviation from equilibrium distribution. This 
formalism can provide two benefits: i) The energy can be strictly 
conserved in scattering procedure by fixing the number of sampling 
particles. ii) Since the deviation from the equilibrium distribution is 
much smaller than the distribution itself, sampling the deviation from 
equilibrium significantly reduces the stochastic uncertainty compared 
with sampling the distribution function. Based on this deviational 
variance-reduced Monte Carlo algorithm, the phonon BTE can be effi-
ciently solved. 

Another challenging to simulate hydrodynamic process is to deal 
with the full scattering matrix, which makes our scattering algorithm 
different from the case under relaxation time approximation  [35–38]. 
Under relaxation time approximation, the scattering probability Pqs 

under a time interval Δt is determined by relaxation time τqs, 

Pqs = 1 − exp
(

−
Δt
τqs

)

(4)  

and Phonons re-distribute to equilibrium after scattering. However, with 
full scattering matrix, the sample particles change their mode following 
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a probability matrix, 

P(Δt) = eAΔt ≈ I + AΔt (5)  

where I is identity matrix. And phonons are re-distributed as 

δfqs(t+Δt) =
∑

q′s′
Pqs, q′s′(Δt)δfq′s′(t) (6) 

The scattering procedure requires more considerations than directly 
simulated Eq. (6) using a stochastic method, because both Pqs, q′s′ and δfq′s′ 

can be either positive and negative, and simply flipping the sign of δfq′s′ 

could break the energy conservation. To account for this complexity, 
Eq. (6) can be mathematically rewritten as 

δfqs(t+Δt) =
∑

q′s′
sgn
[
Pqs, q′s′(Δt)

]
⃒
⃒Pqs, q′s′(Δt)

⃒
⃒

pq′s′

[

1+
∑∞

n=1

(
p−

q′s′

pq′s′

)n

2n

]

δfq′s′(t)

(7)  

where sgn is the sign function, and 

pq′s′ =
∑

qs

⃒
⃒Pqs, q′s′

⃒
⃒ (8a)  

p−

q′s′ =
∑

qs|Pqs, q′s′<0

⃒
⃒Pqs, q′s′

⃒
⃒ (8b) 

The Eq. (7) can be implemented through the following algorithm 
[27]: 

For a sample particle at mode j with carried energy ε,  

(1) Transit particle to mode i that satisfies 
∑i− 1

k=1

⃒
⃒Pk,j

⃒
⃒

pj
≤ R <

∑i
k=1

⃒
⃒Pk,j

⃒
⃒

pj
(9)   

where R is a random variable uniformly distributed in [0,1).  

(2) If Pi,j < 0,  
i) update the energy carried by this sample particle as ε′ = − ε,  

ii) generate two new particles in mode j with carried energy ε and 
process each by going to step (1). 

Based on this algorithm, the energy conservation can be rigidly 
enforced in scattering procedure. However, the generation of additional 
particles can boost up the particle numbers in the simulation domain 
and generate errors due to out of memory. To solve this problem, a 
cancellation procedure is arranged after scattering procedure to remove 
particle pairs that carry opposite energies and are in the same phonon 
mode and spatial cell. 

2.3. Sampling of temperature 

In deviational variance-reduced Monte Carlo algorithm, the devia-
tion of the local temperature T away from the background equilibrium 
temperature Teq, ΔT = T − Teq, is derived from the local deviational 
energy, 

ΔT(x, t) =
∑

qs δfqs(x, t)
C

(10)  

where C is the volumetric specific heat at Teq. 

2.4. Boundary conditions 

Three types of boundary conditions can be applied in Monte Carlo 
simulation, the specular, diffusive, and equilibrium temperature 

boundary conditions. For specular boundary condition, the sample 
particles are reflected by the boundary by changing the sign of their 
velocity component perpendicular to the surface. For diffusive boundary 
condition, the sample particles that carry deviational energy δfqs 
randomly change its mode at the boundary according to the distribution 
of the mode-dependent specific heat Cqs, since the deviational energy 
under the temperature rise ΔT contained by phonon mode qs is CqsΔT. In 
a diffusive boundary scattering process, the velocities and the moving 
directions of the reflected phonons are randomly distributed. At the 
boundaries maintained at equilibrium temperature, ΔT is fixed at zero, 
hence the sample particles are removed once arrive at those boundaries. 

3. Result and discussion 

3.1. Hydrodynamic transport regime 

In Fig. 1a, we derive the thermal conductivity of isotopically pure 
graphite nanowire with diffusive boundary and 4-µm-width square 
cross-section by solving the BTE through deviational variance-reduced 
Monte Carlo algorithm. The thermal conductivity of materials can be 
determined by sampling the heat flux under applied temperature 
gradient. The temperature gradient is applied by adding a source term to 
the governing equation, 

∂δfqs

∂t
+ vqs⋅∇δfqs =

∑

q′s′
Aqs, q′s′δfq′s′ − Cqsvqs⋅∇T (11)  

where the source term on the right-hand side arises because f0
qs varies in 

space when there is a temperature gradient. In our Monte Carlo algo-
rithm, ∇T can emit sample particles that carries deviational energy, 
leading to non-equilibrium. For the simulation setup, we initialize the 
sample particles at x = 0, t = 0, distributed randomly over the cross- 
section area. The modes are assigned based on the distribution of |Cqsvqs⋅ 
∇T| with the sign of the carried unit energy opposite to the sign of 
vqs⋅∇T. Then we simulate the evolution of the sample particles and 
sample the total heat flux as a function of time, yielding the transient 
heat flux in response to the heating pulse at t = 0. We employed a time 
step of 0.1 ps and used a 20 × 20 spatial mesh at the nanowire cross- 
section, which has been confirmed to achieve convergence. In the end, 
we integrate the responsive heat flux cumulatively over time to deter-
mine the steady-state heat flux under ∇T, and derive the thermal con-
ductivity of nanowire. The numerical procedure has been validated by 
comparing with semi-analytical approximate solutions in Appendix A. 

Based on Monte Carlos algorithm, we deterministically recovered the 
resistance to hydrodynamic heat flux caused by the friction with nano-
wire wall, analogous to Poiseuille flow in fluids. As shown in Fig. 1a, the 
calculated thermal conductivity decreases at low and high temperature 
limit, forming a peak near 100 K. The temperature-dependent thermal 
conductivity of graphite nanowire can be attributed into three regimes. 
At low temperature, the phonon mean free path (i.e., the distance a 
phonon travels between consecutive scatterings) exceeds the nanowire 
width, causing the phonons to ballistically bounce back and forth be-
tween boundaries. In this regime, the thermal conductivity increases 
with temperature due to the increase of the high energy phonons. At 
high temperature, thermal energy diffuses along the nanowire, and in 
this regime, the thermal conductivity drops with increasing temperature 
due to the increased anharmonic scatterings. In the intermediate hy-
drodynamic regime, the heat flux flows in the nanowire like Poiseuille 
flow, and the thermal resistance is partially contributed by the friction 
with boundary. As shown by the inset of Fig. 1a, the drifting velocity of 
the collective phonon flux is near zero at the nanowire boundary due to 
diffusive scattering, increases as it moves away from the boundary, and 
peaks at the center of nanowire. 
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3.2. Propagation of hydrodynamic wave packet 

To elucidate the transport physics in hydrodynamic regime, the dy-
namics of the phonon transport in graphite at 100 K is simulated by this 
ab initio approach. Fig. 1b shows the evolution of temperature field 
response to a given heat pulse at t = 0 and x = 0. The simulation domain 
has been made long enough to make sure the propagating phonon 
density waves do not reach the other boundary. We observed two 
components of the temperature field, the diffusive and the hydrody-
namic component. The two components are extracted by fitting the 
overall temperature profile with two Gaussian functions. Since the 
thermal diffusion is driven by phonon density gradient, the diffusive 
component always has the maximum at the boundary. On the other 
hand, hydrodynamic component is a propagating wave packet. The 
temperature field calculated by phonon Boltzmann transport equation 
exhibits remarkable difference from the solution of the heat diffusion 
equation, 

T(x, t) =
1
̅̅̅̅̅̅̅̅̅̅
4παt

√ exp
(

−
x2

4αt

)

(12)  

where α is the thermal diffusivity. This contrast showcases the pro-
nounced deviation of the propagative hydrodynamic heat transport 
away from the conventional heat diffusion. Fig. 1c shows the propaga-
tion of the hydrodynamic wave packet, characterized by diminishing 
intensity and broadening width. The moving wave pack demonstrates 
typical characteristics of fluid. The inset of Fig. 1c represents the decay 
of the wave intensity, fitted by dual exponential terms, suggesting the 

decay of the wave packet involves two processes. The timescale of the 
rapid process is comparable to the phonon lifetime, thus, during this 
process, phonons experience insufficient scatterings and transport 
ballistically analogy to radiation. The rapid process fades within 1 ns, 
indicating that ballistic component is negligible at the time points shown 
in Fig. 1b. During the slow process, despite adequate scatterings 
occurring among the phonons within the wave packet, the wave packet 
still propagates collectively due to momentum-conserving Normal 
scatterings. From the slow process, we extract the propagation length lp 

of the hydrodynamic wave shown in the inset of Fig. 1c. 

3.3. Window of hydrodynamics transport 

Utilizing ab initio Monte Carlo simulation, we are able to identify the 
length scale and temperature where the hydrodynamic phonon trans-
port can be observed. At the scale far larger than lp, the hydrodynamic 
waves extinct, leading to thermal transport governed by diffusion of 
phonons. When reducing the scale to phonon mean free path, the pho-
nons travel ballistically and no longer support the continuity condition 
for hydrodynamic process. Therefore, the propagation length lp and 
ballistic limit lb defines a window for hydrodynamic regime as shown in 
Fig. 1a and d. The ballistic limit can be estimated as mode-averaged 
phonon mean free path, 

Λ =

∑
qsCqsΛqs
∑

qsCqs
(13)  

Fig. 1. Ab initio analysis of hydrodynamic phonon transport in isotopically pure graphite. a) Thermal conductivity of 4-um-width graphite nanowire in 
ballistic, hydrodynamic, and diffusive regimes as a function of temperature. b) Temperature field response to a heat pulse under a background temperature of 100 K. 
The temperature field determined by the phonon Boltzmann transport equation (black solid) is a superposition of the diffusive (red solid) and hydrodynamic (blue 
solid) components, and shows noticeable difference from the heat diffusion equation solution (back dashed). c) Visualization of hydrodynamic wave pack propa-
gation. The inset shows the fitting of the slow and fast processes occurring during the intensity decay of the temperature wave. d) Window for hydrodynamic 
phonon transport. 
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where Cqs is the volumetric specific heat and Λqs =
⃒
⃒vqs
⃒
⃒τqs is the phonon 

mean free path of the phonon mode qs. The calculated window for hy-
drodynamic phonon transport is shown in Fig. 1d. From Fig. 1d, the 
hydrodynamic process exists in isotopically pure graphite up to 250 K at 
the length around 0.14 µm. 

3.4. Quantified strong normal scatterings in Graphite 

The hydrodynamic phonon transport is caused by strong Normal 
scatterings compared with Umklapp scatterings. As shown in Fig. 2a, the 
Normal scatterings can strictly conserve the momentum of phonons 
defined as ℏq, while the Umklapp scatterings cannot. Since the phonon 
wavelength are always longer than the lattice parameters, the phonon 
wave vectors should always stay inside the Γ-centered first Brillouin 
Zone. Once a phonon scattering process generates a phonon mode out of 
the first Brillouin Zone, the phonon wave vector will be transformed 
back to the first Brillouin Zone based on translational invariance as 
shown in Fig. 2a, which as a result destroys the phonon momentum. 
Strong Umklapp scatterings could prevent a large deviation from equi-
librium distribution, keep the average phonon velocity near zero, and 
avoid convective phonon transport. On the other hand, the Normal 
scatterings can maintain the momentum of the phonon flux, which 
makes the phonon flows behave like fluid. 

To quantitatively verify the strong Normal scattering in graphite, we 
demonstrate the ratio of normal scattering rates τ− 1

N to total scattering 
rates τ− 1

total at 100 K at qz = 0 plane for the selected phonon branches in 
Fig. 2b, indicating vast majority of the phonon modes are dominated by 
normal scatterings. In the flexural acoustic (ZA), transverse acoustic 
(TA), longitudinal acoustic (LA), and first flexural optical (ZO1) 
branches presented in Fig. 2b, around 84% of the phonon modes exhibit 
Normal scattering rates surpassing Umklapp scattering rates. In the 
remaining 8 optical branches which are occupied by only 5% of the 
phonons, half of the phonon modes still present Normal scattering rates 
exceeding Umklapp scattering rates. The strong Normal scattering in 
Graphite is the reason of the observed hydrodynamic phonon transport. 

3.5. Hydrodynamic phonon vortex 

As a further step, we simulate the phonon transport in hydrodynamic 
regime and compared with the transport features derived from heat 
diffusion model and fluid model (see Appendix B). The heat diffusion 
equations and fluid equations are solved by finite element methods 
using COMSOL Multiphysics  [39]. We observed convective features in 
solid heat conduction due to hydrodynamic phonon transport. 

In Fig. 3a-c, heat transport in a 1-μm-wide square disk at a back-
ground temperature of 100 K is simulated using the phonon BTE and 

compared with results from the heat diffusion and fluid model. In the 
heat diffusion model and phonon BTE, a 0.2-μm-width heating source 
and cooling source are positioned at the top edge of the left boundary 
and the right edge of the bottom boundary, respectively. In the fluid 
model, the heating and cooling sources are replaced with fluid inlet and 
outlet. The insulative, slip, and specular boundary conditions are 
applied in the heat diffusion model, fluid model, and phonon BTE, 
respectively. Fig. 3a-c shows the resultant flux fields with streamlines. 
Fig. 3a demonstrates the absence of vortex in heat flux as calculated by 
heat diffusion model, since the vortex cannot be generated through 
diffusion processes. Fig. 3b shows a vortex at the corner by fluid model, 
as indicated by the streamlines. In Fig. 3c, the phonon flux by BTE also 
demonstrates a vortex at the corner, which illustrates the convective 
feature in solid heat conduction due to the hydrodynamic phonon 
transport. 

To explore the formation conditions of the phonon vortex, we 
investigate the effects of disk size and background temperature in Fig. 3d 
and e, respectively. In Fig. 3d, we compute the heat flux fields for square 
widths ranging from 50 nm to 7.5 μm, maintaining a fixed flux density at 
the heating and cooling sources and a constant background equilibrium 
temperature. We observe that as the width of the square increases from 
1 μm to 3 μm, the vortex at the top right corner disappears. Regarding 
the vortex at the bottom left corner, its size grows from approximately 
0.5 μm to around 1.2 μm when the width of the square extends from 1 
μm to 3 μm, and remains constant as the square width further increases 
to 5 μm. At 1 μm width, the size of the vortex is limited by the di-
mensions of the square disk. As the square width expands, the size of the 
vortex is no longer constrained by the geometry and becomes compa-
rable with the average phonon mean free path. When the width of the 
square further increases to 7.5 μm, the phonon vortex disappears as the 
phonon density wave originating from the heating source cannot prop-
agate a sufficiently long distance to form a vortex in such a large disk. 
Consequently, at a width of 7.5 μm, thermal transport transits from 
convective to diffusive. On the other hand, as the size of the disk de-
creases, the streamlines gradually become increasingly tortuous. At 100 
nm width, the vortex at the top right corner splits into two. Furthermore, 
at 50 nm width, phonons travel ballistically without sufficient scatter-
ings since the size of the disk becomes less than the phonon mean free 
path, leading the flux field and streamline to appear more chaotic due to 
the anisotropic nature of the crystal along various orientations. In 
Fig. 3e, we compute the heat flux field under varying background 
equilibrium temperature, while fixing the geometry. As the temperature 
increases, the thermal transport transit from convective to diffusive due 
to the reduced propagation length of phonon density wave. At 150 K, the 
vortex at top right corner disappears, and at 200 K, the vortex at bottom 
left corner vanishes. In contrast, with the decrease of temperature, the 

Fig. 2. Intrinsic phonon spectral properties that lead to strong phonon hydrodynamic. a) Schematic of Normal scattering and Umklapp scattering. b) Portion of 
Normal scatterings at qz = 0 for selected phonon branches, including flexural acoustic (ZA), transverse acoustic (TA), longitudinal acoustic (LA), and first flexural 
optical (ZO1) branches. 
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thermal transport transit from convective to ballistic due to increased 
phonon mean free path. At 50 K, the flux field and streamline exhibit 
chaotic and tortuous patterns. Based our study, we found that the 
convective phonon transport occurs within a specific range of size and 
temperature. At lower temperatures or smaller sizes, when the phonon 
mean free path exceeds the size of the domain, the thermal transport 
becomes ballistic. On the other hand, at higher temperatures or larger 
sizes, when the propagation length of phonon density wave is shorter 
than the size of the domain, the thermal transport becomes diffusive. 

3.6. Hydrodynamic phonon jet 

To further explore the characteristics of hydrodynamic phonon 
transport, we use ab initio Monte Carlo simulations to demonstrate the 
formation of a phonon jet flow arising from the propagation of phonon 
wave packets in hydrodynamic regime. In Fig. 4a-c, we simulate the 
transport process of the jet flow at 100 K, originating from a 0.2-μm- 
width inlet or heat source. In the heat diffusion model, we apply thermal 
insulation boundary condition at left and side boundaries, and fixed 
temperature boundary condition at right boundary. In the fluid model, 
we apply no-slip, slip, and open boundary condition for left, side, and 
right boundaries, respectively. In phonon BTE, we apply diffusive, 
specular, and equilibrium temperature boundary condition for left, side, 
and right boundaries, respectively. The simulation domain is sufficiently 
large to ensure negligible effects from the side and right boundaries on 
the demonstrated region. In a heat diffusion process, as shown in Fig. 4a, 
the isocontour of the flux density shows a semicircle shape, reflecting 
the uniform distribution of flux density from a point heater over various 
angles. While for fluid in Fig. 4b, the jet flow is highly directional due to 

the bulk motion of the fluid. Similarly, in Fig. 4c, the heat flux field by 
phonon BTE also demonstrates a strong directional characteristic, 
illustrating fluid-like features in solid heat transfer due to phonon con-
vection. Our simulations in real geometries uncover the fluid-like 
convective features of heat conduction in solids. 

To comprehensively understand the behavior of the phonon jet flow, 
we examined the impact of inlet width and background temperature 
based on phonon BTE in Fig. 4d and e, respectively. As both the inlet 
width and temperature decrease, the phonon jet flow becomes more 
directional due to longer phonon mean free path relative to the char-
acteristic length of the thermal transport. Conversely, as the inlet width 
and temperature rise, the phonon jet flow gradually become less direc-
tional and approaches to diffusive transport due to the increased phonon 
scatterings that diminish the directional nature of the flow. 

4. Conclusion 

In summary, we investigate the convection of phonons in heat con-
duction processes based on ab initio approaches. The hydrodynamic 
phonon transport is simulated by solving the phonon BTE with the 
scattering matrix determined by quantum perturbation theory using ab 
initio approaches based on density functional theory. The fluid-like 
features such as vortex and jet flow are captured by the BTE beyond 
relaxation time approximation and compared with the heat diffusion 
model based on Fourier’s law and the fluid model based on Navier- 
Stokes equation. We observed the fluid-like convective features in heat 
conduction that was missed in classical heat transfer theory. This work 
expands the fundamental understandings of the heat conduction from 
quantum theory and atomistic scale simulations. The investigations on 

Fig. 3. Flux fields and streamlines of vortex generated at the corner of a square disk. (a-c) Comparison in a 1-μm-width square disk at 100 K among (a) heat 
diffusion model, (b) fluid model, and (c) Boltzmann transport equations with ab initio phonon interactions. (d) Compare the effects of varying disk size under a fixed 
background temperature at 100 K. (e) Compare the effects of varying background temperature with fixed disk width at 1 μm. Both (d) and (e) are derived from 
Boltzmann transport equations with ab initio phonon interactions. The colormap represents the magnitude of flux density, the red curve shows the streamlines, and 
the red arrow indicates the flow direction. 
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the phonon convection could innovate the thermal design of the future 
microelectronic industries [26,40,41] and other thermal management 
applications [42–44], which potentially opens opportunities to address 
the heat dissipation issues in the post-Moore era. 
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Appendix A 

To fully validate our numerical procedure, we compared our calculated size-dependent nanowire thermal conductivity with the semi-analytical 
approximate solutions [45]. Under temperature gradient ∇T, the phonon distribution (nqs) deviates from equilibrium Bose-Einstein distribution 
(n0

qs), and can be expanded as 

nqs = n0
qs −

∂n0
qs

∂T
Fqs⋅∇T (A1)  

Fig. 4. Flux fields and streamlines of a jet flow. (a-c) Comparison in a jet flow at 100 K originating from a 0.2-μm-width inlet among (a) heat diffusion model, (b) 
fluid model, and (c) Boltzmann transport equations with ab initio phonon interactions. (d) Compare the effects of varying inlet widths under a fixed background 
temperature at 100 K. (e) Compare the effects of varying background temperature with fixed inlet width at 0.2 μm. Both (d) and (e) are derived from Boltzmann 
transport equations with ab initio phonon interactions. The colormap represents the magnitude of flux density, the red curve shows the streamlines, and the red arrow 
indicates the flow direction. 
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where qs denotes a phonon mode with wavevector q and polarization s, and Fqs is the expansion coefficient that quantifies the deviation of phonon 
distribution. Given that the cross-plane phonon mean free path is shorter than the width of the nanowire, while the in-plane phonon mean free path 
exceeds the width, we assume that confinement occurs only in the in-plane direction. By solving Boltzmann transport equation with relaxation time 
approximation, Fqs(y) varies with the distance to boundary y, and can be approximately expressed as 

Fqs(y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

F∞
qs

[

1 − exp
(

−
y

Λy,qs

)]

, 0 < y ≤
W
2

F∞
qs

[

1 − exp
(

−
W − y
Λy,qs

)]

,
W
2
< y ≤ W

(A2)  

where W is the width of the nanowire, and Λy,qs =
⃒
⃒vy,qs

⃒
⃒τqs is the in-plane phonon mean free path. Here, a diffusive boundary condition is applied, 

assuming phonons are fully equilibrium at the boundary, i.e., Fqs(y = 0) = 0. F∞
qs is the Fqs in bulk materials and can be obtained by solving Boltzmann 

transport equation through self-consistent iterations [15]. 
When applying ∇T along the nanowire, the heat flux J is given by J =

∫

S
1
N
∑

qsℏωqsvα
qs(nqs(y) − n0

qs)ds = − Sκ∇T, where S denotes the cross- 
sectional area and α represents the projection along nanowire. From this, the thermal conductivity of nanowire, κ, can be subsequently derived as 

κ =
1
N
∑

qs
Cqsvα

qsF
α
qs (A3)  

where Fα
qs is cross-section average of Fα

qs(y), 

Fα
qs = F∞,α

qs

{

1 −
4Λqs

W

[

1 − exp
(

−
W

4Λy,qs

)]}

(A4) 

In Fig. 5, we compared the ab inito Monte Carlo results with semi-analytical approximate solution, focusing on graphite nanowire along the 
armchair orientation. The agreement shown in Fig. 5 validates our numerical approach. At W = 0.1 μm, the semi-analytical solution slightly over-
estimates the thermal conductivity due to the neglect of confinement in the cross-plane direction. At W > 0.5 μm, semi-analytical solution slightly 
underestimates the thermal conductivity due the implication of relaxation time approximation.

Fig. 5. Comparison between ab inito Monte Carlo results and semi-analytical approximate solution.  

Appendix B 

In fluid model, we consider a steady-state laminar flow. The equation set is as follows, 

ρ∇⋅u = 0 (B1)  

ρ(u⋅∇)u = ∇⋅
(
− pI+ μ

(
∇u+(∇u)T)) (B2)  

where Eq. (B1) and Eq. (B2) are the continuity equation and Navier-Stokes momentum equation, respectively. u is velocity. ρ and μ are density and 
dynamic viscosity, respectively. In Fig. 3c, a pressure difference at 10 kPa is applied between inlet and outlet. In Fig. 4c, the inlet velocity is set to be 15 
m/s. 

References 

[1] F.P. Incropera, D.P. DeWitt, T.L. Bergman, A.S. Lavine, Fundamentals of Heat and 
Mass Transfer, 8th Edition, Wiley, 2017. 

[2] J.M. Ziman, Electrons and Phonons: The Theory of Transport Phenomena in Solids, 
Oxford University Press, Oxford, 1960. 

[3] E.W. Prohofsky, J.A. Krumhansl, Second-sound propagation in dielectric solids, 
Phys. Rev. 133 (1964) A1403. 

[4] R.J. Hardy, Phonon Boltzmann equation and second sound in solids, Phys. Rev. B 2 
(1970) 1193. 

H. Wu and Y. Hu                                                                                                                                                                                                                               

http://refhub.elsevier.com/S0017-9310(23)01133-X/sbref0001
http://refhub.elsevier.com/S0017-9310(23)01133-X/sbref0001
http://refhub.elsevier.com/S0017-9310(23)01133-X/sbref0002
http://refhub.elsevier.com/S0017-9310(23)01133-X/sbref0002
http://refhub.elsevier.com/S0017-9310(23)01133-X/sbref0003
http://refhub.elsevier.com/S0017-9310(23)01133-X/sbref0003
http://refhub.elsevier.com/S0017-9310(23)01133-X/sbref0004
http://refhub.elsevier.com/S0017-9310(23)01133-X/sbref0004


International Journal of Heat and Mass Transfer 220 (2024) 124988

9

[5] A. Cepellotti, G. Fugallo, L. Paulatto, M. Lazzeri, F. Mauri, N. Marzari, Phonon 
hydrodynamics in two-dimensional materials, Nat. Commun. 6 (2015) 6400. 

[6] S. Lee, D. Broido, K. Esfarjani, G. Chen, Hydrodynamic phonon transport in 
suspended graphene, Nat. Commun. 6 (2015) 6290. 

[7] J.C. Ward, J. Wilks III, Second sound and the thermo-mechanical effect at very low 
temperatures, Lond. Edinbur. Dublin Philos. Mag. J. Sci. 43 (1952) 48–50. 

[8] Y. Guo, M. Wang, Phonon hydrodynamics and its applications in nanoscale heat 
transport, Phys. Rep. 595 (2015) 1–44. 

[9] A. Ward, D.A. Broido, D.A. Stewart, G. Deinzer, Ab Initio theory of the lattice 
thermal conductivity in diamond, Phys. Rev. B 80 (2009), 125203. 

[10] K. Esfarjani, G. Chen, H.T. Stokes, Heat transport in silicon from first-principles 
calculations, Phys. Rev. B 84 (2011), 085204. 

[11] J. Garg, N. Bonini, B. Kozinsky, N. Marzari, Role of disorder and anharmonicity in 
the thermal conductivity of silicon-germanium alloys: a first-principles study, Phys. 
Rev. Lett. 106 (2011), 045901. 

[12] T. Feng, X. Ruan, Quantum mechanical prediction of four-phonon scattering rates 
and reduced thermal conductivity of solids, Phys. Rev. B 93 (2016), 045202. 

[13] J.S. Kang, M. Li, H. Wu, D. Nguyen, Y. Hu, Experimental observation of high 
thermal conductivity in boron arsenide, Science 361 (2018) 575–578. 

[14] H. Fan, H. Wu, L. Lindsay, Y. Hu, Ab Initio investigation of single-layer high thermal 
conductivity boron compounds, Phys. Rev. B 100 (2019), 085420. 

[15] H. Wu, H. Fan, Y. Hu, Ab Initio determination of ultrahigh thermal conductivity in 
ternary compounds, Phys. Rev. B 103 (2021), L041203. 

[16] S. Li, Z. Qin, H. Wu, M. Li, M. Kunz, A. Alatas, A. Kavner, Y. Hu, Anomalous 
thermal transport under high pressure in boron arsenide, Nature 612 (2022) 
459–464. 

[17] H. Wu, Z. Qin, S. Li, L. Lindsay, Y. Hu, Nonperturbative determination of isotope- 
induced anomalous vibrational physics, Phys. Rev. B 108 (2023), L140302. 

[18] J. Callaway, Model for lattice thermal conductivity at low temperatures, Phys. Rev. 
113 (1959) 1046. 

[19] X. Li, S. Lee, Role of hydrodynamic viscosity on phonon transport in suspended 
graphene, Phys. Rev. B 97 (2018) 94309. 

[20] X. Li, S. Lee, Crossover of ballistic, hydrodynamic, and diffusive phonon transport 
in suspended graphene, Phys. Rev. B 99 (2019) 85202. 

[21] J. Jeong, X. Li, S. Lee, L. Shi, Y. Wang, Transient hydrodynamic lattice cooling by 
picosecond laser irradiation of graphite, Phys. Rev. Lett. 127 (2021) 85901. 

[22] S. Huberman, R.A. Duncan, K. Chen, B. Song, V. Chiloyan, Z. Ding, A.A. Maznev, 
G. Chen, K.A. Nelson, Observation of second sound in graphite at temperatures 
above 100K, Science 364 (2019) 375–379. 

[23] M.Y. Shang, C. Zhang, Z. Guo, J.T. Lü, Heat vortex in hydrodynamic phonon 
transport of two-dimensional materials, Sci. Rep. 10 (2020) 8272. 

[24] Y. Guo, Z. Zhang, M. Nomura, S. Volz, M. Wang, Phonon vortex dynamics in 
graphene ribbon by solving Boltzmann transport equation with Ab Initio scattering 
rates, Int. J. Heat Mass Transf. 169 (2021), 120981. 

[25] J.S. Kang, H. Wu, Y. Hu, Thermal properties and phonon spectral characterization 
of synthetic boron phosphide for high thermal conductivity applications, Nano Lett 
17 (2017) 7507–7514. 

[26] J.S. Kang, M. Li, H. Wu, H. Nguyen, T. Aoki, Y. Hu, Integration of boron arsenide 
cooling substrates into gallium nitride devices, Nat. Electron. 4 (2021) 416. 

[27] C.D. Landon, N.G. Hadjiconstantinou, Deviational simulation of phonon transport 
in graphene ribbons with Ab initio scattering, J. Appl. Phys. 116 (2014), 163502. 

[28] G.P. Srivastava, The Physics of Phonons, CRC Press, 1990. 
[29] P. Hohenberg, W. Kohn, Inhomogeneous Electron Gas, Phys. Rev. 136 (1964) 

B864. 
[30] W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation 

effects, Phys. Rev. 140 (1965) A1133. 
[31] P. Giannozzi, et al., QUANTUM ESPRESSO: a modular and open-source software 

project for quantum simulations of materials, J. Phys.: Condens. Matter 21 (2009), 
395502. 

[32] P. Giannozzi, et al., Advanced capabilities for materials modelling with quantum 
ESPRESSO, J. Phys.: Condens. Matter 29 (2017), 465901. 

[33] T. Tadano, Y. Gohda, S. Tsuneyuki, Anharmonic force constants extracted from 
first-principles molecular dynamics: applications to heat transfer Simulations, 
J. Phys.: Condens. Matter 26 (2014), 225402. 
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