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Nonclassical Heat Transfer
and Recent Progress
Heat transfer in solids has traditionally been described by Fourier’s law, which assumes
local equilibrium and a diffusive transport regime. However, advancements in nano-
technology and the development of novel materials have revealed nonclassical heat transfer
phenomena that extend beyond this traditional framework. These phenomena, which can be
broadly categorized into those governed by kinetic theory and those extending beyond it,
include ballistic transport, phonon hydrodynamics, coherent phonon transport, Anderson
localization, and glass-like heat transfer. Recent theoretical and experimental studies have
focused on characterizing these nonclassical behaviors using methods such as the
Boltzmann transport equation,molecular dynamics, and advanced spectroscopy techniques.
In particular, the dual nature of phonons, exhibiting both particle-like and wave-like
characteristics, is fundamental to understanding these phenomena. This review summarizes
state-of-the-art findings in the field, highlighting the importance of integrating both particle
and wave models to fully capture the complexities of heat transfer in modern materials. The
emergence of new research areas, such as chiral and topological phonons, further
underscores the potential for advancing phonon engineering. These developments open up
exciting opportunities for designing materials with tailored thermal properties and new
device mechanisms, potentially leading to applications in thermal management, energy
technologies, and quantum science. [DOI: 10.1115/1.4066973]

1 Introduction

For over two centuries, Fourier’s law has been the foundational
theory of heat conduction, traditionally describing heat flux as
proportional to the temperature gradient.Despite its general success,
Joseph Fourier initially based the law on the assumptions of local
equilibrium and a linear response, without accounting for the
underlying mechanisms [1]. In modern terms, these assumptions
align with the diffusive heat transfer regime, where heat carriers,
such as phonons in nonmetallic solids, undergo random walks,
resulting in a mean free path (MFP) that is small relative to the
system size.While the introduction of concepts like heat carriers and
phonon MFP has somewhat limited the applicability of Fourier’s
law, diffusive heat transfer still prevails in most materials and

devices, allowing Fourier’s law to remain applicable in many
practical situations [2].
However, the rapid advancement of nanotechnology [3], new

materials, devices, and extreme conditions [4–6] have unveiled heat
transfer phenomena that extend beyond the traditional diffusive
regime, necessitating a deeper understanding to advance thermal
management and energy technologies. These nonclassical heat
transfer phenomena can be broadly categorized into two types: those
governed by kinetic theory and those extending beyond it. The first
category includes phenomena such as ballistic transport, phonon
hydrodynamics, and near-surface or interfacial thermal transport,
which can be described using kinetic models like the Boltzmann
Transport Equation (BTE) [7,8]. The second category encompasses
effects that rely on the wave-like nature of lattice vibrations,
requiring alternative approaches such as the Wigner formulation of
the transport equation [9,10].
In Fig. 1, we outline several regimes of nonclassical heat transfer,

characterized by two key parameters: the phonon MFP (K), which
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represents the distance a phonon travels between successive
scatterings, and the coherent length (n), indicates the distance over
which phase coherence of lattice waves is preserved. Classical heat
transfer occurs in the diffusive regime, where both K and n are
significantly shorter than the characteristic length (L), but longer
than the phonon wavelength (k), ensuring that heat transfer is
dominated by orthogonal vibrational modes, validating the particle-
like behavior of the phonon gas. In this regime, sufficient phonon
scatterings maintain local thermal equilibrium, allowing heat to be
transported via diffusion. However, when L is reduced to a scale
comparable to or smaller than K, the number of phonon scatterings
becomes insufficient for diffusive transport, leading to ballistic heat
transfer, where phonons propagate without scattering, akin to
radiation. Hydrodynamic phonon transport can occur when
momentum-conserving scatterings dominate over momentum-
destroying ones and L is between the MFPs of these two types of
scatterings, resulting in fluid-like heat transfer behaviors, analogous
to viscosity and convection. The hydrodynamic, ballistic and
diffusive phonon transport could coexist due to the broad range of
spectral-dependent phononMFP.When n becomes comparable to or
exceeds L, phase coherence can be preserved over long distances,
leading to a different heat transfer mechanism known as coherent
phonon transport. This phenomenon can occur in superlattices,
where the characteristic length L refers to the period thickness. In
certain systems where K is short due to numerous phase-preserving
scatterings but coherence length n is sufficiently long, constructive
and destructive interference effects can enhance or hinder phonon
transport in specific regions, potentially leading to strongly localized
vibrational modes, a phenomenon known as Anderson localization.
Conversely, when K or n becomes shorter than k, lattice waves lose
phase coherence, resulting in localized vibrational modes that
transport through wave-like tunneling processes. This regime is
typically observed in disordered or strongly anharmonic systems,
exhibiting heat transfer behavior similar to that of glasses. These
nonclassical heat transfer phenomena have garnered significant
interest in recent years, presenting both new challenges and
opportunities to advance our understanding of heat transfer.
Recent efforts from both theoretical and experimental perspec-

tives have sought to understand and characterize these nonclassical
heat transfer phenomena. Theoretical studies employ methods such
as lattice dynamics (LD) [11–19], Monte Carlo (MC) method
[20–26], molecular dynamics (MD) [27–31], and the atomistic
Green’s function (AGF) [32]. These approaches are used to

characterize the thermal properties of materials and interfaces and
to elucidate the underlying heat transfer processes. LD provides
direct solutions to phonon theory, yielding both harmonic and
anharmonic properties of materials, such as phonon dispersion,
phonon density of states (DOS), and phonon lifetimes. Based on LD
results, the phonon BTE can be numerically solved by MC method
that randomly samples phonon bundles to characterize heat
transport processes. MD simulations, grounded in classical
mechanics, utilize interatomic potentials to extract valuable
information from the dynamic trajectories of atoms. AGF uses
harmonic matrices of contacts and devices to solve the transmission
coefficient across structures, studying heat transport across
interfaces and within nanostructures. Collectively, these theoretical
methods cover a wide range of length and time scales, offering deep
insights into heat transport mechanisms and aiding in the design of
materials with tailored thermal properties. On the experimental
front, advanced techniques [33] have been developed to enhance the
understanding of nondiffusive heat transfer, including pump-probe
spectroscopy methods, such as time-domain thermoreflectance
(TDTR) [34–37], frequency-domain thermoreflectance (FDTR)
[38], and transient thermal grating [39] methods, as well as
nanoscale thermometries [40]. These experimental approaches
enable precise measurement of thermal properties, including
thermal conductivity, thermal boundary resistance (TBR), vibra-
tional modes, phonon MFPs, and phonon lifetimes, with high
accuracy and resolution. By integrating theoretical and experimen-
tal studies, nonclassical heat transfer has been extensively explored
across various materials and systems, including bulk materials, thin
films, nanostructures, and interfaces. This comprehensive inves-
tigation has led to the discovery of new phenomena and the
development of innovative materials and devices.
The rest of this review is organized as follows: Following Fig. 1,

ballistic regime, phonon hydrodynamics, glass-like heat transport,
and coherent heat transport will be discussed in Secs. 2–5,
respectively. Expanding our scope of nonclassical heat transfer,
recent studies on interfacial heat transport, near-field radiation, and
surface phonon polariton will be covered in Secs. 6–8. Finally, in
Sec. 9, we conclude the review and introduce future outlooks,
summarizing the key findings and discussing potential directions for
further research.

2 Ballistic Heat Transfer

In the microscopic picture of heat transfer in solids, where
phonons are the dominant heat carriers, thermal transport is
governed by the phonon BTE [8], originally introduced by Peierls
[7] as follows:

@n

@t
þ vg,qs � rn ¼ @n

@t

� �
scatt

where n is the phonon distribution function that gives the density of
phonons at position x in mode qs, and vg,qs is the group velocity.
Here, qmarks wavevector and s is the branch index. To characterize
the scattering term on the right-hand side of the phonon BTE, the
relaxation time approximation (RTA) is often employed, utilizing
the Bhatnagar-Gross-Krook operator [41], is often employed. This
approach assumes that the phonon distribution function relaxes to
the equilibrium distribution function n0 with a relaxation time sqs.
Under this approximation, the BTE can be solved by assuming that n
is close to n0 and the difference between them, dnqs ¼ nqs � n0,qs,
has no spatial and temperature variations. The difference is given by
dnqs ¼ �sqs @n0,qs=@T

� �
vg � rT. The thermal conductivity tensor

for a bulk material is then expressed as

jij ¼ cqsvg,qs,ivg,qs,jsqs BZi�
where � BZih denotes integration over the first Brillouin zone and
summation over phonon branches,Cqs is the volumetric specific heat
of mode qs. In an isotropic manner, the thermal conductivity can be

Fig. 1 Regimesof heat conduction characterized by the phonon
mean free path (K) and phonon coherence length (n), in
comparison with the phonon wavelength (k) and characteristic
size (L)
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simplified as j ¼ 1
3
cqsvg,qsKqs BZi�

, where Kqs ¼ vg,qssqs represents
the phonon MFP.
However, this derivation is only valid when the phonon MFP is

much smaller than the system size, a condition under which the bulk
assumption holds. When the phonon MFP is comparable to or even
larger than the system size, the ballistic heat transfer regime emerges
(Fig. 2(a)), where phonons can travel without scattering, making
boundary scattering more significant. At small scales or low
temperatures, a reduced thermal conductivity can be expected, as
the intrinsic phononMFP is constrained by the system size. Casimir
[42] first proposed the proportionality between the thermal
conductivity and the system size, a concept now known as the
Casimir limit. Using equilibrium MD, Henry and Chen [27]
estimated that at room temperature, phonons with MFPs larger
than 1 lm contribute 35% of the total thermal conductivity of
silicon. Based on Landauer formalism, Jeong et al. [43] showed that
both the in-plane and cross-plane thermal conductivities of silicon
thin films are reduced due to the boundary scattering.With advances
in computational power, ab initio calculations have become feasible
for studying heat transfer [44]. By extracting force constants from
density functional theory (DFT) calculations, Broido, Mingo,
Lindsay et al. employed the perturbation theory to calculate the
mode-dependent phonon scattering time [13–16,18,19,45–48].
Esfarjani and Chen [13] calculated the accumulative thermal
conductivity of silicon as a function of phonon MFP.
In addition to the reduced thermal conductivity, temperature

jumps at boundaries were explored in various theoretical studies.
Klitsner et al. [49] proposed the temperature jumps by studying the
concept of phonon radiative transport, and this phenomenon was
further explored by Joshi and Majumdar [50] through solving the
equation of phonon radiative transport [51]. Chen [52] attributed this
temperature jump to the nonequilibrium nature of the transport
process and the energy-based definition of temperature. Maassen
and Lundstrom [53,54] used McKelvey-Shockley flux method to
derive a simplified phonon BTE to capture the boundary
temperature jump attributed to the ballistic thermal resistance.
They found that this resistance is an intrinsic material property
rooted in the nonequilibrium nature of phonon ballistic transport,
rather than being a result of enhanced phonon scattering at the
contacts.
Taking ballistic effects into account, several efforts have been

made to modify Fourier’s law. Chen [55,56] proposed a ballistic-
diffusive model that separates the diffusive component within the

material from the ballistic component associated with boundaries.
By attributing the ballistic effects to the boundaries, the ballistic-
diffusive model shows better agreement with the phonon BTE than
the Cattaneo-Vernotte (CV) model [57,58], even though the
mathematical form of the ballistic component in the ballistic-
diffusivemodel is identical to that in the CVmodel. Alvarez and Jou
[59] included Knudsen number dependent thermal conductivity in
the hyperbolic formulation of the Fourier’s law without separating
the ballistic and diffusive components, finding results similar to
those of Chen’s model [55,56].
In recent years, ab initio approaches for phonon calculations at the

nanoscale have advanced significantly, and various high-efficiency
software packages have become widely available. Popular DFT
software includes VASP [60,61], Quantum ESPRESSO (QE)
[62–64], CP2K [65], ABINIT [66], and OpenMX [67]. Harmonic
properties, such as phonon dispersion, DOS, and heat capacity, can
be computed either using built-in DFPT codes in VASP, QE, and
ABINIT, or by applying the finite displacement method in
combination with one of the DFT software packages and phonon
calculation tools like ALAMODE [68], Phonopy [69,70], and
ShengBTE [71] and the FourPhonon [72] module. The finite
displacement method is also widely used for determining anhar-
monic force constants and calculating phonon scattering. The direct
solution of the phonon BTE has also advanced, with approaches
categorized into stochastic and deterministic methods [73].
Stochastic methods are primarily based on MC sampling, including
phonon-tracing MC [22,74–76], which traces the generation and
scattering of one phonon bundle at a time, and ensembleMC [25,26],
which handles all sampled phonons simultaneously. Phonon-tracing
MC is typically based on the RTA and is more efficient with the
energy-based variation-reduced formulation [22,74], while ensem-
bleMC is capable of handling the full scatteringmatrix formulation.
Deterministic solutions include the finite volume method [77,78],
the discrete ordinates method [79–81] originally used to solve the
radiative heat transfer equation, and the discrete unified gas kinetic
scheme [82]. However, due to the high dimensionality of the phonon
BTE, deterministic solutions are usually limited to the RTA, as
discretizing the phonon BTE with more complex scattering terms
requires large computational resources. Efforts have also beenmade
to unify the phonon BTE and nonequilibrium MD (NEMD) at the
mode level [83–86] to reduce the computational resources
demanded by NEMD and to study the modal nonequilibrium of
phonons.

Fig. 2 Ballistic heat transfer. (a, b) Adapted from Science 361, 575, 2018. (a) Schematic of heat flux for a fixed temperature
difference as a function of the Knudsen number. Red and blue lines indicate the actual heat flux and the flux predicted by Fourier’s
law, respectively. Insets show that the thermal transport evolves from a diffusive to a ballistic regime when the heating size is
gradually reduced. When the actual heat flux was measured and fitted to Fourier’s law to obtain an effective thermal conductivity
(keff), a gradual reduction in keff was expected with a decreasing heating size. Essentially, the keff decrease is due to the evolution
from diffusive to ballistic transport for the phononswith a mean free path comparable to the heating size, and thereby represents
the phonon MFP spectra. (b) Effective thermal conductivity was measured for the three best thermal conductors (BAs, diamond,
andBN), as a function of heatingdiameters from21 to 1.6 lm.Experimental results, comparedwith theMFPspectra calculatedwith
DFT, indicate that in BAs, a large portion of phonons have long mean free paths, owing to the distinctive band structure of BAs.
(c) Reconstruction of phonon MFP contributions to the thermal conductivities for sapphire, GaAs and GaN. Adapted from Nat.
Nanotechnol. 10, 701–706, 2015.
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On the experimental side, early work focused on measuring the
effects of sample size due to quasi-ballistic transport and boundary
scattering. Asheghi et al. [87,88], measured thermal conductivity
reduction in silicon thin films from the bulk value. Johnson and
Cuffe et al. [89] studied in-plane thermal transport in silicon
membranes with varying thermal grating periods. Minnich [90]
measured reduced thermal conductivity in bulk silicon when the
heating areawasminimized using laser spot sizes. To establishmore
quantitative relationships between size-dependent measurements
and phonon spectra, Dames andChen developed amethod to project
cumulative thermal conductivity into phonon MFP distributions
[91,92]. Minnich et al. [90] introduced a suppression function to
relate phonon MFP to thermal length. A direct measurement and
comprehensive reconstruction of phonon spectral contributions to
thermal conductivity were achieved by Hu, Zeng, and Chen et al.
[23,93], spanning a heating range from 30 nm to 100lm. They
constructed phonon MFP spectra for several technologically
important materials, including Si, GaN, andGaAs from experiments
(Fig. 2(c)), in consistencywith ab initiomodeling based on transient,
frequency-dependent BTE and multiscale Monte Carlo methods.
These progresses developed new methodologies and provided
quantitative understanding of confinement effects on phonon
scattering that deviate from Fourier’s law.

3 Phonon Hydrodynamics

Phonon hydrodynamic transport refers to a distinct regime of heat
transfer in solids where phonons exhibit collective, fluid-like
behavior, akin to particles in a fluid. This regime arises under
specific conditions where phonon-phonon scattering is predom-
inantly governed by normal (N) processes, which conserve crystal
momentum, rather than Umklapp (U) processes, which do not.
Phonon-phonon scattering can be categorized into these two
processes (Fig. 3(a)): normal processes conserve crystal momen-
tum, while Umklapp processes do not. At cryogenic temperatures,
the population of phonons with large wavevectors (typically
associated with high energy) is suppressed, leading to a reduction
in Umklapp processes and allowing normal processes to dominate.
Due to the conservation of crystal momentum in normal processes,
phonons in this regime exhibit fluid-like behavior, drawing an
analogy between the phonon gas and the particle description of fluid
flows. This collective behavior of phonons is referred to as phonon
hydrodynamics. The investigations of phonon hydrodynamic effects
can be traced back to the observations of the second sound in
superfluid helium [94] and then in solid helium [95], NaF crystal
[96,97], and Bi crystal [98]. As shown in Fig. 3(d), when heat pulses
are applied to one end of the sample, the signal detected at the other
end indicates that heat propagates as a wave rather than diffusing
through the sample [99]. Different from the first sound, which
involves the propagation of pressure waves through a material, the
second sound is the result of the propagation of waves formed by
collectively excited phonons. Early studies on phonon hydro-
dynamics treats phonon gas as a fluid and solving the Navier–Stokes
equation [100,101]. Later, more accurate phonon hydrodynamic
equations were derived from the phonon BTE, providing a more
precise description of heat propagation and phonon dynamics in
materials [101,102].
However, due to the complexity of describing and solving phonon

scattering in the phonon BTE, the phonon hydrodynamics was
mainly described by phenomenological models [103] until recent
years when directly solving the phonon BTE in a beyond-RTA
manner becomes feasible. Since the normal processes merely
redistribute phonon momentum among different modes, and no
thermal resistance is induced, RTA treatment for the scattering term
in the phonon BTE that does not distinguish between normal and
Umklapp processes cannot capture the phonon hydrodynamics,
hence underestimates the lattice thermal conductivity [104–106]. To
overcome this limitation, Callaway [104] modified the scattering
term by separating the normal and Umklapp processes

@n

@t

� �
scatt

¼ � n� n0
sqs,U

� n� nd
sqs,N

where Umklapp and normal processes are considered to redistribute
phonon population to equilibrium distribution n0 and displaced
distribution nd, respectively. The lattice thermal conductivity
estimated using Callaway’s approximation for phonon scattering
effectively captures phonon hydrodynamics inmaterials with strong
normal scattering processes [107,108]. The phonon hydrodynamics
at nanoscale was simulated in two-dimensional (2D) materials by
solving BTE under Callaway’s approximation using discrete
ordinates method [80]. However, a more accurate description on
phonon hydrodynamics requires a comprehensive consideration of
the scatteringmatrix, which reformulates the phonon scattering term
as

@nqs
@t

� �
scatt

¼ �
X
q0s0

Xqs,q0s0 nq0s0 � n0q0s0
� �

whereXqs,q0s0 is the scatteringmatrix that represent the transition rate
from mode q0s0 to qs. Iterative approaches have been employed to
solve the BTE with the full scattering matrix, yielding an exact
solution for lattice thermal conductivity that incorporates ab initio
methods based on DFT. The thermal conductivity of graphite is one
order of magnitude higher when accurately accounting for phonon
hydrodynamics, demonstrating the significant collective excitations
in graphite due to strong normal processes [109]. Lee andChen solve
the BTE for hydrodynamic phonon transport in suspended graphene
using Green’s function approach [99]. Besides, the BTE with full

Fig. 3 Hydrodynamic thermal transport. (a) Schematic of normal
scatteringandUmklappscattering. (b,c) Adapted from Int. J.Heat
Mass Transfer 220, 124988, 2024. (b) Temperature field response
to a heat pulse under a background temperature of 100K. The
temperature field determined by the phonon BTE (black solid)
shows noticeable difference from the Fourier’s law (back
dashed). (c) Phonon vortex predicted by the phonon BTE using
full matrix scattering. (d) Second sound signal in graphite at 85K
for various grating periods. The inset shows the second sound
frequency (circles) plotted against the wavevector, with a solid
line representing a linear fit that corresponds to a phase velocity
of 3200m/s. Adapted from Science 364, 6438, 2019.
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scattering matrix was further solved in real space using MC
algorithm [25], enabling the simulation of hydrodynamic phonon
transport in nanostructures. Through thisMCsimulation, steady-state
hydrodynamic phonon transport in graphene ribbons was simulated,
showing an analogy to Poiseuille flow in fluids, and thermal viscosity
was identified [110]. The phonon hydrodynamic equations with the
viscous term were derived from the BTE with full scattering matrix
[111],where the thermal viscosity stems fromphonon interactions and
can be derived from the eigenvectors of the scattering matrix. By
solving the BTE with full scattering matrix using MC algorithm, Wu
and Hu [26] simulated the propagation dynamics of the
hydrodynamic waves (Fig. 3(b)) and reported fluid-like behaviors of
phonons such as vortex and jet flow (Fig. 3(c)) in graphite.
Experimental study of phonon hydrodynamics was generally

limited to the low-temperature regime until recent theoretical
predictions that strong phonon hydrodynamics can exist in a group
of two-dimensional materials including graphene and h-BN
[112,113]. Huberman et al. [99] observed the existence of second
sound in graphite between 85K and 125K, confirming the ab initio
calculations. More recently, Ding and Chen et al [114] further
measured the second sound at around 200K using improved
transient grating technique. At higher temperature, the experimental
studies are still rudimentary. Machida et al. [115] claimed that the
room-temperature in-plane thermal conductivity of graphite can be
enhanced with decreasing thickness, which was attributed to the
existence of phonon hydrodynamics.

4 Glass-Like Heat Transfer

Besides the particle-like behavior of phonons that can be
formulated by the kinetic theory [7,8], the dual quantum nature of
phonons also allows them to exhibit their wave nature, especially in
glass-like heat transfer. The phonons are quantized lattice waves,
hence inherent with wave nature. In most crystals, the coherent
lengths of the lattice waves are much longer than their wavelengths,
allowing for the quantization of lattice waves and the treatment of

phonons as particles, as shown in Fig. 4(a). However, when the
coherent length is shorter or comparable with the wavelength, the
vibrational modes are localized and transport through a wave-like
tunneling process. Such wave-like tunneling process usually
happens to amorphous due to the reduced coherence by disorder.
The early attempt to treat the phonon localization was made by

Allen and Feldman [116] (AF) when studying disordered materials.
In the AF theory treatment, a heat current operator S is proposed,
based on which the concept of mode diffusivity Di for mode i is
introduced by reformulating the Green-Kubo formula within in the
framework of harmonic approximations [117,118]. The mode
diffusivity evaluates the coupling between local vibrational modes,
representing the participation of mode i in the heat transport, and the
sumof allmode diffusivities times the specific heat gives the thermal
conductivity. Since its introduction, the AF theory combining with
the particle-like behavior of phonons has been widely used to study
disordered materials such as amorphous materials [116,119–123]
and complex crystals [124]. However, the applicability of the AF
theory is limited due to its exclusion of the anharmonicity. Shenogin
et al. [125]Compared the thermal conductivity of amorphous silicon
obtained by theAF theorywith the results fromMDsimulations, and
found that the AF theory overestimates the thermal conductivity for
systems with complex compositions in which the anharmonicity
plays a significant role.
In addition, though most of the vibrational modes in disordered

materials are localized or quasi-localized, it is also possible that
some low-frequency modes have long MFP and significantly
contribute to heat transport. Allen et al. [120] categorized
vibrational modes into propagons, diffsons and locons by their
properties of propagation or localization, and treated the propagons
as phonon-like modes that have relatively larger MFP. However,
since only off-diagonal elements are considered, the heat current
contributed by the propagation of coherent lattice waves (phonons)
are excluded [9], thus, the contribution of propagons cannot be taken
into account by the original AF theory. Through examining
amorphous silicon, Allen et al. [119] concluded that only about

Fig. 4 Coherent phonon transport and Anderson localization. (a) Schematic of wavelength and coherence length. (b) Two-
dimensional DoS for the thermal conductivity of La2Zr2O7 at 1300K, revealing the coupling between two vibrational modes.
Adapted from Phys. Rev. X 12, 041011, 2022. (c) Schematic of incoherent and coherent phonon transport in superlattices.
(d) Thermal conductivity of GaAs/AlAs superlatticeswith fixed period thickness. The increasing trend indicates ballistic transport
across superlattices, demonstrating the existence of coherent transport. Adapted from Science 338, 6109, 2012. (e) Schematic of
Anderson localization. (f) Normalized Thermal conductivity of GaAs/AlAs superlatticeswith ErAs nanodots inserted at interfaces.
The decreasing trend with respect to the number of periods is due to Anderson localization. Adapted from Science 4, 12, 2018.
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4% vibrational modes are propagons. However, recent MD
calculations [121,126] found that propagons of amorphous silicon
can significantly contribute up to half of the total thermal
conductivity despite the small populations. The role of propagons
is also confirmed by experimental studies on the thickness-
dependency of the thermal conductivity [127] and the MFP spectra
[128]. The lattice thermal conductivity contributed by propagative
modes and nonpropagative modes was estimated by a two-channel
model and compared with experiments, showing non-negligible
contribution from nonpropagative modes in crystal materials with
strong anharmonicity [129].
To improve the AF theory, efforts bridging heat transport in

crystalline and amorphous have been made by Isaeva et al. [130]
through an improved quasi-harmonic approach to the reformulation
of the Green-Kubo formula. It is found that the approach is robust
when dealing with systems with any kinds of structural order. A
more rigorous treatment is established by Simoncelli et al. [9,10]
through the Wigner formulation of the transport equation

@

@t
n x, q, tð Þs,s0 þ i x qð Þsn x, q, tð Þs,s0 � n x, q, tð Þs,s0x qð Þs0

	 

þ 1

2

X
s00

v qð Þs,s00 � rxn x, q, tð Þs00 ,s0
�

þ
X
s00

rxn x, q, tð Þs,s00 � v qð Þs00,s0
)

¼ @n x, q, tð Þs,s0
@t

����
Ĥper

where n x, q, tð Þs,s0 and v qð Þs,s0 are the generalization of the phonon

distribution function and the group velocity, respectively. The
diagonal terms represent the same physics as the phonon BTE
formulation in the phonon BTE (population channel). The off-
diagonal terms describe the wave-like tunneling behavior of
localized modes, which are related to the phase coherence between
pairs of eigenstates s and s0 (coherence channel). It is found that the
Wigner formulation can be reduced to both the phonon BTE and the
AF theory under certain conditions, thus providing a unified
framework to study the phonon transport in a wide range of
scenarios. Applying this unified framework, the thermal conductiv-
ity of La2Zr2O7 was calculated. Fig. 4(b) presents the diagonal and
off-diagonal contributions to the La2Zr2O7 thermal conductivity. It
was found that phonon branches with large group velocities
contribute more to the population channel, while the flat phonon
branches contributemore to the coherence channel [9]. In addition to
complex crystals, Simoncelli et al. [131] investigated the thermal
conductivity of amorphous silicon oxide, and found agreement with
both the experimental results and the prediction of the AF theory,
validating the ab initio approach to studying heat transport in
amorphous materials. These studies on advancing glass-like heat
transport may facilitate future material applications such as
thermoelectrics [132], thermal insulation [133], and sustainable
building technologies [134].

5 Coherent Heat Transport

Phonon transport is usually modeled using particle-based
methods as in the BTE, where the phase information of lattice
waves is assumed to be unimportant and thus neglected. However,
when multiple interfaces exist at the nanoscale in a periodic pattern,
the particle picture could be insufficient for describing transport
physics due to interference between forward and backscattered
lattice waves; hence, the wave nature of the phonon must be
considered. Typical examples include superlattices where two
alternating layers of different materials with high-quality interfaces,
consisting of a supercell whose period could be as small as a few
angstroms.As shown in Fig. 4(c),when the period length is large, the
heat transport is in diffusive regime, therefore a simple description
based on particle models is valid. In this diffusive regime, as the
period length becomes smaller, phonon MFPs reduce due to
interface scatterings, leading to decreasing thermal conductivity.
However, as the period decreases further to lengths comparable to or

smaller than the phonon intrinsic anharmonic MFP, the reflected
waves can retain their phase information over multiple periods
before undergoing anharmonic scattering. The preservation of phase
allows for (non-)constructive interference between waves, leading
to the formation of a new folded phonon band structure with
minibands and band gaps, thereby reshaping themodes available for
transmission within the material [135]. These phonon modes, also
known as coherent phonons in contrast to incoherent particle-like
phonons, travel inside the material as if in a homogeneous medium
where the interface does not serve as a scattering site and has MFPs
greater than the period length. In these regimes, as the period
reduces, the thermal conductivity goes up due to less band flattening
caused by the reduced band-folding effect. Such a crossover
between coherent and noncoherent transport regimes in thermal
conductivity has been highlighted in both experimental and
computational studies.
Extensive modeling efforts on coherent/incoherent phonon

transport in superlattices are documented. Explorations start from
particle methods: by assuming the phonon behaviors in neighboring
layers are uncorrelated and interfaces scatter phonons, the solutions
to the BTE [136,137] reveal an increasing thermal conductivity as
the period length increases in GaAs/AlAs and Si/Ge superlattices.
Pure wave models assume phonons are correlated in neighboring
layers and require the use of supercell for phonon band calculation.
Harmonic lattice dynamics on Si/Ge superlattices [138–140]
predicts the decrease of thermal conductivity versus period length
and attributed the finding to the reduced phonon velocity due to band
gap opening. An imaginary component added to the phonon
wavevector has been phenomenologically proposed to integrate
the particle and wave pictures together [141], matching the
experimental observation on nonmonotonic thermal conductivity
behavior [142]. Later on, by combining first-principlesDFTwith the
BTE method, the mode-wise group velocities, heat capacities, and
scattering lifetimes of coherent phonon modes along with interface
roughness effects in Si/Ge superlattices [143] have been thoroughly
examined in superlattices. Greens function methods [144,145],
though fully harmonic, have also been adopted to probe the spectral
phonon transmittance through the superlattices.
Different than the aforementioned methods, which need to

assume the coherent/incoherent nature of phonon modes,
molecular dynamics, which rely on the atomic trajectories in
real space, have no such prior assumptions, and thus can
naturally include both the coherent and incoherent effects. The
effect of interfacial species mixing on the thermal conductivity
of Si/Si0.7Ge0.3 and Si/Ge has been studied using molecular
dynamics [146]. A detailed computational study identified the
relationship between heat transfer regime and phonon coherence
length, MFPs, and superlattice period length [147]. Computa-
tions on relevant superstructures such as periodic nanoporous
films [148], 2D superlattices [149], van der Waals superlattices
of transition metal dichalcogenides [150], SiGe nanowires [151]
can also be found in the literature.
Early experiments show Si/Ge and GaAs/AlAs superlattices have

smaller thermal conductivity compared to their bulk counterparts
over a wide range of temperatures [34,152]. But whether coherent
phonons exist was under debate until the first unambiguous
experimental observation in GaAs/AlAs superlattices of constant
period but varying sample thickness [153].As shown inFig. 4(d), the
observed linear increase of thermal conductivity with sample
thickness, indicating a ballistic thermal transport at low temper-
atures where phonon–phonon anharmonic scattering is weak,
confirming the existence of phonon modes having MFPs larger
than a period immune to interface scattering. Later, a crossover from
coherent to incoherent phonon transport has been reported on high-
quality epitaxial oxide superlattices featuring aminimum in thermal
conductivity against interface density [142]. The characteristics of
coherent phonons have been also reported in a variety of
superstructures, includingRuddlesdon–Popper phases [154], silicon
nitride periodic porous films [155], Ge/Si core–shell nanowires
[156], colloidal nanocrystal superlattices [157].
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Anderson localization is another phenomenon that could be
resulted by the dominance of coherent phonons. As shown in
Fig. 4(e), Anderson localization arises from the interference of
multiple-wave scatterings in highly disordered systems, where
constructive interference can enhance the probability in certain
regions, while destructive interference hinders dissipation path-
ways. In phonon transport, Anderson localization occurs as certain
phonon modes transition from propagating to localized due to
destructive interference from multiple elastic scattering events. For
example, in superlattices, unlike the ballistic effect, as the total
thickness of the superlattices increases, some phonons cease
propagation and no longer contribute to heat conduction, leading
to a decreasing thermal conductivity with increasing thickness. The
idea of phonon localizationwas proposed byVenkatasubramanian’s
work [158] where the reduction of cross-plane thermal conductivity
in Bi2Te3/Sb2Te3 superlattices is contributed by the localization of
low-frequency phononwithAnderson criterion applied on the cutoff
frequency, and later follow-up by other simulations [159,160]. In
Fig. 4(f), Anderson localization was experimentally observed in
disordered GaAs/AlAs superlattices [161,162]. At cryogenic
temperatures, the thermal conductivity peaks at a certain sample
length before declining against the increase of sample length,
featuring Anderson localization. Recently as machine learning
methods become increasingly popular, there are studies [163,164]
taking advantage of optimization algorithms to search for aperiodic
superlattices maximizing Anderson localization for achieving
minimum thermal conductivity. These developments on coherent
heat conduction and localization unlock the potential to engineer
phonon thermal transport in the wave regime as realized for photons
and electrons.

6 Interfacial Thermal Transport

Unlike the nonclassical phenomena within materials that cannot
be described by the mathematical form of Fourier’s law, interfacial
thermal transport [33] is generally treated as an extension. In this
context, heat flux results in a finite temperature discontinuity at the
interface, and the proportionality between heat flux and the
temperature jump is characterized by the thermal boundary
conductance (TBC, G), or its reverse, the thermal boundary
resistance (TBR, R), in the form of q ¼ GDT ¼ DT=R, and it can
be resulted by interface scattering, incomplete contact, and near-
interface disorder (Fig. 5(a)). The importance of TBR is usually
evaluated by Kapitza length LK ¼ k=G. For characteristic length
scales comparable or smaller than LK, the interfaces become a vital
factor in hindering the thermal transport. The Kapitza length ranges
from tens of nanometers for high quality Pd/Ir interface [165] to tens
of micrometers for Bi/diamond interface [166], and can be even
higher due to the roughness or contamination [167]. In ballistic
regime, it is found that the TBR can even depend on the nearby
environment, such as other interfaces that selectively filter phonons
[168,169]. Therefore, for modern devices with nanoscale features,
the TBR is a critical parameter that needs to be carefully considered
and improved.
Analytical formulations of the thermal boundary resistance

(TBR) mainly include two models, the acoustic mismatch model
(AMM) and the diffuse mismatch model (DMM) [170]. The AMM
follows the elastic wave theory, giving the transmission coefficient
of phonons across the interface as:

a12 h, sð Þ ¼
4
q2vs,2
q1vs,1

cos hs,2
cos hs,1

q2vs,2
q1vs,1

þ cos hs,2
cos hs,1

� �2

where q, v are the density and phonon group velocity, respectively.
The subscripts 1 and 2 denote the two materials, and s is the phonon
branch index. The angle h is the angle between the phonon
wavevector and the interface normal. The AMM is valid for low

temperature cases where long-wavelength acoustic phonons
dominate the heat transport. The DMM, on the other hand, assumes
that phonons lose memory of their original direction and polar-
ization once they are scattered at the interface. The transmission
coefficient in the DMM is given by

a12 ¼
P

sv
�2
s,2P

sv
�2
s,1 þP

sv
�2
s,2

,

where the summation is over all phonon branches. DMM is valid for
higher temperature and rough interfaces where the phonon
scattering on the interface is more diffusive and isotropic.
Despite that bothAMMandDMMare simplifiedmodels, it can be

seen from them that the transmission coefficient is higher when the
phonon bands of the twomaterials aremore similar, leading to lower
TBR, vice versa. For example, the Debye temperature of diamond is
approximately 2000K, which is significantly higher than that of
materials employed in the semiconductor industry, resulting in high
TBR between diamond and these materials. Contrarily, BAs and BP
exhibit lower Debye temperature, suggesting a potentially lower
TBR with more matched phonon DoS, and is confirmed by both
atomistic modeling and experimental investigations [24].
For numerical calculations of TBR, MD and AGF are widely

applied methods. Mingo and Yang [32] employed AGF and solves
the transmission coefficient for each phonon mode using the
harmonic matrices of the contacts and device. However, the
consideration of anharmonicity requires significant effort with
substantially growing degrees of freedom [171].MD simulations for
TBR are twofold, i.e., equilibriumMD (EMD) [29] andNEMD [28].
Similar with the determination of thermal conductivity, the Green-
Kubo formula can also be extended to the calculations of TBR,while
NEMD generally applies two thermal reservoirs to the system under
simulation, and extracts the heat flux and temperature jump at the
interface. LD, on the other hand, involves substituting plane-wave
solutions to represent the incident, reflected, and transmitted waves
at an interface [172–174]. The amplitudes of these plane waves are
then determined by applying boundary conditions or solving the
equations of motion for the atoms located near the interface.
However, due to the lack of anharmonicity, LD is restricted to low
temperatures. All three methods rely on accurate interatomic forces
that can be either empirical or computed byDFT.However, it should
be noticed that empirical potentials are usually fitted to reproduce
one or some of material properties, thus could lead to unreasonable
results for other properties. Strides have been made toward the
improvement of interatomic potential. For example, a reactive force
field [175] is developed based on quantum mechanical principles,
and it can even characterize bond formation and breaking. Recently,
considerable work has been done to develop machine learning
interatomic potentials [176,177] that are trained by DFT calcu-
lations and are able to provide similar accuracy levels with ab initio
calculations. Nevertheless, it is important to acknowledge that, in
any case, there could be a tradeoff between accuracy and computa-
tional cost.
Experimentally, thermal interface and TBR has been well studied

for both fundamental interface properties and thermal interface
applications [33]. Early steady-statemeasurements of TBR involves
with the heater-sensor method, that is to measure the temperature
difference in response to a given heat flow [170,178]. The sensors
can be thermocouples, thermistor, or infrared thermometers, and it
usually requires the sample to be at a large size scale, resulting in the
difficulty to measure micro- and nanoscale sample. An improved
technique to perform steady-state measurements at nanoscale is the
T-type method [179–181], which uses a hot wire to serve as both the
heater and the sensor. Later, the transient 3x method [182–184] is
extensively employed to measure both thermal conductivity and the
TBR. The 3x method uses an AC at frequency x to produce Joule
heating at frequency 2x, then extract 3x responses to analyze
thermal properties. Comparing with the steady-states measure-
ments, the 3xmethod can significantly exclude the error introduced
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by radiative heat transfer. However, extra thermal resistance can
also be introduced by additional insulating layer that electrically
isolates the sample [33]. Based on ultrafast optics, thermal
measurements have been greatly advanced by the transient
thermoreflectance technique, especially TDTR [34–37] and FDTR
[38,185]. FDTR applies a varied frequency difference between the
pump and the probe lasers, while TDTR introduces a delay time
between the two lasers, and they both extract thermal properties by
fitting a corresponding heat conduction model. Due to the high
sensitivity and reliability, TDTR has been broadly used to study
interfacial thermal transport phenomena, for example, interfaces
comprising low-dimensional materials [186,187], anisotropic
interfacial phonon transport (Figs. 5(b) and 5(c)) [30], and dynamic
tuning of TBR (Figs. 5(d) and 5(e)) [6].

7 Near-Field Radiation

In addition to the phonon-mediated heat transport, radiative heat
transfer can also behave differentmanners at small scales.When two
objects are closely spaced, the radiative heat transfer between them
can be enhanced by the tunneling of evanescent waves, and the
blackbody radiation limit can be surpassed [188]. This phenomenon
is known as near-field radiation, and has attracted much attention in
recent years, especially in the context of nanoscale heat transfer.
Theoretical investigations into near-field radiation are mainly based
on Polder and Van Hove’s work [189] that is originated from the
fluctuational electrodynamics (FE) formulation [190]. For two
closely placed parallel plates, the heat flux across the gap d is

q ¼
ð1
0

ð1
0

�hx

e�hx=kBT

� �
s x,j, dð Þ jdj

2p
dx
2p

where s ¼ ss þ sp it the total transmission that incorporates the
transverse electric (TE, s)mode and the transversemagnetic (TM, p)
mode. j is the in-plane wave number, the integral with respect to j
thus includes both propagating waves (j � x=c) and evanescent
waves (j > x=c). The transmission coefficient for evanescent
waves decays exponentially, the heat flux thus approaches black-
body limit when the gap is sufficiently large. However, for the near-
field situations, the contribution due to evanescent waves can be
significant. The critical size scale can be measured by kTh that is the
result ofWien displacement law. In addition to parallel plates, other
geometries such as point-to-surface [191] and sphere-to-substrate
[192] are also studied.
The first experiments were carried by Tien and coworkers

[193,194] at cryogenic temperatures between two copper plates,
they measured heat transfer rates as a function of gap size ranging
from 2mm to 10lm, and found that the heat flow monotonically
increases with decreasing gap size. At room temperature, Har-
greaves [195] observed the enhanced heat transfer between two
metal plates by adjusting the gap size atmicrometer scale. However,
due to the large surfaces, Hargreaves could not reach distances
smaller than 1.5 lm. Xu et al. [196] applied the piezotube of a
scanning tunneling microscope head to control the gap size,
enabling the measurements between 1.5 lm down to mechanical
contact, and it is found that heat transfer can saturate when the gap
size is as small as tens of nanometers. Later, Kittel et al. [197] used a
gold tip to measure the heat transfer between the tip and a surface.
The measurements for the gold sample and the GaN sample suggest
several orders of magnitude of enhanced near-field radiation at
nanoscale. However, below 10 nm, the results differ markedly from
the prediction of FE, revealing that the macroscopic description of
the dielectric properties fails at nanoscale. At temperatures higher

Fig. 5 Interface thermal transport and dynamic tuning. (a) Schematic shows the multiscale contributions to interfacial thermal
transport and a lumped TBR, including the atomistic interface scattering to incomplete microscale contacts and disorders near the
interface. Adapted from J. Mater. Chem. C, 8, 10568, 2020. (b, c) Anisotropic TBR, adapted from Advanced Materials 31, 1901021,
2019. (b) Atomisticmodeling consideringphononmodedependent interface transmission; (c) experimentalmeasurements andMD
simulation results of temperature dependent TBR, along varied crystal orientation of black phosphorus. (d, e) Dynamic thermal
tuning and electrically gated thermal switch, adapted from Science 382, 585, 2023. (d) The measured thermal conductance as a
function of gate voltage. Inset, High-resolution cross-sectional TEM image of the device structure showing the atomically resolved
interface. (e) High–switching speed measurements, plotting thermal switching cycles versus scanning frequency response up to
1MHz, measured at every decade.
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than room temperature, Hu et al. [198] reported that the blackbody
limit is exceeded by near-field radiation for two glassy plates.
The experimental studies of near-field radiation are challenged by

the relatively small radiative heat transfer rate [199] and the
difficulty to control and measure the gap sizes [200–202].
Fortunately, rapidly developing computational studies opened the
possibilities of engineering the near-field radiation. For simple
curved surfaces, radiative thermal conductance can be estimated by
using the Derjaguin approximation [203,204], i.e., to approximate
the curved surfaces by differential flat areas. For arbitrary
geometries, most widely used approaches include the scattering
matrix approach [205–207], the fluctuating surface current for-
mulation [208–210], and the finite difference time domain approach
[211,212]. Computational investigations with these methods have
revealed the possibilities to use near-field radiation to realize or
improve diverse applications, such as thermophotovoltaic gener-
ators [213], heat flow modulation [214,215], thermal rectification
[216,217], thermal transistors [218].

8 Surface Phonon Polariton

Surface phonon polaritons (SPhPs) are hybrid quasi-particles
resulting from the coupling between electromagnetic (EM) waves
and optical phonons at the surface of polar dielectric materials. In
polar materials, EM waves can couple with atomic vibrations
through dipole-dipole interactions. When the frequency of EM
waves matches that of the optical phonons, the EM waves resonate
with the lattice vibrations, leading to the formation of phonon
polaritons. The SPhPs are confined to the interface between metals
and dielectric polar materials, because the amplitude of EM waves
decays exponentially within the bulk dielectric material due to the
inherent material properties, including optical absorption and
the dielectric function of the material. Metals plays a crucial role
in the formation of SPhPs since they can provide a high density of
free electrons that can interact with EMwave. SPhPs have garnered
significant attention due to their potential applications in nano-
photonics, thermalmanagement, and infrared optics. Especially, the
SPhPs are being explored as potential novel energy carriers to
enhance heat conduction.
The SPhPs are known to have long propagation lengths,

especially in thin films [219,220]. The properties of SPhP, including
their dispersion relation and propagation length, were determined
using Maxwell equations by Yang et al. [221] In 2005, Chen et al.
[222] analyzed the heat conduction capabilities of SPhP and found
that SPhPs along SiO2 thin films could enhance the thermal
conductivity by several folds due to their exceptionally long
propagation lengths compared to phonons. Many subsequent
theoretical investigations into the thermal transport of SPhPs have
been conducted by Volz et al., such as the SPhPs in asymmetric
surrounding media [223], quantum conductance of SPhP [224], and
SPhP in assembly of spheroidal nanoparticles [225]. Yun et al. [226]
studied the size effects on the thermal transport of SPhPs by solving
the spectral-dependent BTE.
Several experiments have been conducted to explore the thermal

transport of SPhPs. Chen et al. [227] measured the propagation
length of SPhPs, showing it can reach up to 10.8 lm on silicon
dioxide thin films. The thermal conductivity of silica thin films and
SiN nanomembranes was observed to increase by up to twofold due
to the presence of SPhPs [228,229]. In SiN nanomembranes, the
propagation length of SPhPs was demonstrated to reach hundreds of
micrometers [230]. In SiO2 nanoribbons, non-Fourier behavior
resulted by SPhPs in over 50–100lm distance at room and high
temperature is captured [231]. In 2023, the thermal conductance of
3 C-SiC nanowires coated with gold was measured to be more than
two orders of magnitude higher than the Landauer limit, with the
remarkable enhancement attributed to nonequilibrium SPhPs [232].
Surface phonon polaritons represent a fascinating intersection of

optics and phononics, offering unique opportunities as novel energy
carriers to enhance heat conduction at the nanoscale. Ongoing

investigations and developments are expected to have a profound
impact on thermal management.

9 Conclusion and Outlook

Heat transfer beyond classical Fourier’s law has been extensively
studied over the past decades to address the growing demands of
thermal management and the pressing need to understand transport
physics at the nanoscale. This review briefly summarizes key
phenomena that deviate from the classical regime, including those
arising from the particle-like behavior of phonons, such as ballistic
transport, phonon hydrodynamics, and interfacial and surface
thermal transport. It also covers phenomena associated with the
wave-like behavior of phonons, such as coherent phonon transport
and phonon localization. Additionally, advances in near-field
radiation are discussed.
The dual nature of phonons, exhibiting both particle-like and

wave-like characteristics, is fundamental to their quantum behavior,
and the interplay between these behaviors is crucial for under-
standing heat transfer. Beyond the phonon BTE, recent efforts are
developing new approaches such as unified formulation of the
Wigner Transport Equation, which shows promise in characterizing
heat transport that encompasses both particle-like and wave-like
properties in ordered and disordered materials. However, the
complexities involved in solving the transient Wigner Transport
Equation for real-world materials of finite size remain a significant
challenge, highlighting an opportunity for further research and
innovation in this field. Alternatively, approaches that combine
rigorous calculation such as ab initio theory with high-throughput
processing such as machine learning modeling may provide benefit
for certain areas [233].
In addition to established phenomena, emerging areas of research

such as chiral phonons and topological phonons offer exciting
prospects for advancing phonon engineering. Chiral phonons
[234–236], which possess angular momentum and exhibit unique
coupling with electronic and magnetic degrees-of-freedom, could
enable novel mechanisms for controlling thermal conductivity in
materials with broken inversion symmetry. Topological phonons
[237–239], characterized by their robust edge states protected by the
material’s topological properties, present another frontier for
manipulating heat transport with unprecedented precision. These
phenomena not only expand our understanding of phononic
behavior but also open up new possibilities for designing materials
with tailored thermal properties, potentially leading to ground-
breaking applications in electronics thermal management and
quantum technologies.
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